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Structure of twist-grain-boundary –C phases

Arindam Kundagrami and T. C. Lubensky
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~Received 18 March 2003; published 31 December 2003!

We study properties of the Renn-Lubensky twist-grain-boundary–C (TGBC) phase, with layer normal
rotating in a plane perpendicular to the pitch axis, and the Bordeaux TGBC phase, with the layer normal
rotating on a cone parallel to the pitch axis near the upper critical twistkc2 marking the transition to the
cholesteric phase. We introduce a generalized model free energy for the smectic-C phase that allows either
TGBC phase to be stable, and we calculatekc2 and the order-parameter profile, which shows only modest
spatial variation, for both phases.
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Twist-grain-boundary or TGB phases@1,2,4# are phases o
layered smectic liquid crystals@3# induced by molecular
chirality. They consist of periodically spaced grain boun
aries, each composed of an array of parallel dislocatio
separating smectic slabs as depicted in Figs. 1 and 2.
layer normalsN of the slabs rotate in discrete jumps acro
the grain boundaries. These remarkable phases are the a
in liquid crystals@5# of the Abrikosov flux lattice in super
conductors@6# with the complex smectic mass-density-wa
amplitudec the analog of the superconducting order para
eter, dislocations in the grain boundary the analog of vo
ces, and the chiral coupling constanth induced by molecular
chirality the analog of the external magnetic fieldH.

The simplest TGB phase is the TGBA phase in which the
smectic slabs between grain boundaries have the charac
a bulk smectic-A (SmA) phase in which the layer normalN
and the directorn, specifying the direction of average mo
lecular alignment, are parallel to each other in a plane p
pendicular to the pitch axis alongp. In TGBC phases, the
smectic slabs have the character of a bulk smectiC
(SmC)with n tilted relative toN. Two distinct structures for
the TGBC phase immediately come to mind. In the first@7,8#,
both N andn rotate in the plane perpendicular top but with
a finite angle between them as shown in Fig. 1. We will re

FIG. 1. The RL TGBC phase. There is a fixed angle between t
layer normalN and the directorn, which rotate in the plane per
pendicular to the pitch axisp.
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to this as the Renn-Lubensky or RL TGBC phase. In the
second TGBC phase, discovered@9# and studied by the Bor-
deaux group and collaborators@10#, n rotates in the plane
perpendicular top, butN rotates on a cone with a compone
parallel to p so thatp does not lie parallel to the smecti
layers as shown in Fig. 2. We will refer to this as the Bo
deaux or B TGBC phase. No pure form of the RL phase h
been reported, though phases with two-dimensional mod
tion of the local RL TGBC structure have been observed@11#.
Though the RL TGBC structure may be unstable with respe
to these modulations, we assume here that it can be st
We will not discuss the TGBC* phase@8# with smectic-C*
slabs in which the director rotates in a cone from layer
layer.

Our goal is to study the structure of both the RL and
phases near the upper critical fieldhc2, where the TGBC
phase becomes unstable with respect to the cholesteric p
in which the smectic order parameter is zero and the dire
twists in a helical fashion aboutp with a pitchP. We follow
closely the procedure developed by Abrikosov@6# in his
analysis of the superconducting flux phase near the up
critical field Hc2 and applied successfully to the TGBA phase
nearhc2 @1#. Our analysis of the transition to the bordea
TGB phase is essentially identical to that presented

FIG. 2. The Bordeaux TGBC phase. There is a fixed angle be
tweenN andn, but n rotates in the plane perpendicular top, andN
rotates on a cone whose axis is parallel top.
©2003 The American Physical Society03-1
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Luk’yanchuk @12#. Using a more general model than h
which does not permit a stable RL phase, we study both
B and RL phases, including their order-parameter profi
but not the TGB2q phase he introduced.

Several results of our analysis are worthy of note. T
linear stability operator associated with the TGBA phase, like
that associated with the Abrikosov phase, is a quantum
monic oscillator Hamiltonian,Hu52d2/du21u2, whereu
is a rescaled coordinate alongp. The same operator assoc
ated with the B phase is au4-anharmonic oscillator Hamil-
tonian,2d2/du21u4, whereas that associated with the R
phase is the dual of the Bordeaux operator,d4/du41u2. The
dependence of the grain-boundary spacingl b , the dislocation
spacingl d within a grain boundary, and the smectic coh
ence lengthj on the cholesteric pitchP and the layer spacing
d is different in the three phases as reviewed in Table I. T
near equality ofl b and l d in the TGBA phase and their
P1/2d1/2 dependence on pitch and layer spacing has b
verified @2#. Experimentally@10#, l b is substantially larger
thanl d in the Bordeaux TGBC phase in agreement with Tab
I. Finally, we find that the smectic order parameter, thou
depressed at the grain boundaries, is reasonably consta
the two TGBC phases as shown in Fig. 3. We find no e
dence in the B phase of melted grain boundaries along w
c;0 as suggested by Dozov@13#.

To describe the smectic properties of the TGB phases
hc2, we use a slight modification of the Chen-Lubensky~CL!
model@14# for transitions from the nematic~N! to SmA SmC
phases. In this model, the smectic molecular number den
is expressed asr5c1c* , wherec is the complex mass
density-wave amplitude with wave numbers with magnitu
peaked nearq052p/d. The free energyFc5FH1FNL is
the sum of a nonlinear part, whereFNL5 1

2 g*d3xucu4, and a
part harmonic inc,

TABLE I. Hu and proportionality ofl b , l d , andj to powers of
P andd in TGB phases.

Phase Hu l b l d j

TGBA 2d2/du21u2 P1/2d1/2 P1/2d1/2 P1/2d1/2

Bordeaux 2d2/du21u4 P2/3d1/3 P1/3d2/3 P2/3d1/3

RL d4/du41u2 P1/3d2/3 P2/3d1/3 P2/3d1/3

FIG. 3. The square amplitudeuc(x,0,0)u2 smectic order param
eter as a function ofx in ~a! the Bordeaux phase and~b! the RL
TGBC phase. These figures show the squared slab wave func
uf(x2nlb)u2 with n521 centered at2 l b ~short dash, short
space!, with n51 centered atl b ~long dash, short space!, and with
n50 ~short and long dashes! and uc(x,0,0)u2 ~full line!. Though
uf(x)u dies off fairly rapidly, uc(x,0,0)u2 has a robust value a
grain-boundary positionsx/ l b560.5. Note the asymmetry abou
x50 in the RL case.
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FH5E d3x†r̃ ucu21D uuu@¹ uu
2~x!1q0

2#cu2

1D'u@¹'
2 ~x!1q0'

2 #cu2

1D uu'@¹ uu
2~x!1q0

2#c* @¹'
2 ~x!1q0'

2 #c1c.c.‡, ~1!

where¹ uu
2(x)[@n(x)•“#2 and¹'

2 (x)5¹22¹ uu
2(x). With the

identification q0'
2 52C'/2D' and r̃ 5r 2C'

2 /(4D'), this
model is simply an alternative representation of the
model@14# except for the term proportional toD iu' , which,
as we shall see, is needed to stabilize the RL phase. W
q0'

2 ,0, this model has a phase transition from t
N phase to the SmA phase withc5cAeiq0z, where cA

5(2r /g)1/2. Whenq0'
2 .0, it has a transition to the SmC

phase withc5cCeiqC•x, where cC5(2 r̃ /g)1/2, with qC
5(q0'cosg,q0'sing,q0) for any angleg.

To complete the description of our system, we add
Frank free energyFn for the director including the contribu
tion from molecular chirality,

Fn5
1

2E d3x$K1~“•n!21K2@n•~“3n!#2

1K3@n3~“3n!#21hn•~“3n!%. ~2!

When c50, the equilibrium state is the cholesteric pha
determined byFn alone with director

n0~x!5~0,2sink0x,cosk0x!, ~3!

wherek05h/K2[2p/P.
There are several dimensionless quantities inF5Fc

1Fn that play a role in our analysis. One is the rat
k0 /q05d/P, which is of the order of 1022 or less. Our
primary concern will be the limit in whichk0 /q0 approaches
zero, and we will consider only leading terms in this rat
Other parameters are the ratios

h'5D' /D uu , h iu'5D uu' /D uu , v5q'0
2 /q0

2 ,

and the twist Ginzburg parameter, k2

5(gK2/2)1/2/(4D uuq0
3). In at least one material@15#, h uu'

'0 andh'!1, but there is noa priori reason why either of
these conditions should not be violated.v5tan2a is a mea-
sure of the equilibrium tilt anglea betweenn and N. It is
more convenient to use the twistk05h/K2 rather thanh as a
measure of chirality. The critical twist at which the chole
teric phase becomes unstable to the TGB phases iskc2
5hc2 /K2.

To determine when the cholesteric phase first becom
unstable with respect to the development of smectic or
and to find our variational wave functions@1# for the TGB
phases, we calculate the lowest eigenvalues and assoc
eigenfunctions of the harmonic kernel obtained fromFH
with n~x! replaced byn0(x). This kernelK is a periodic
function of x with period P/2. Its eigenfunctions are, there
fore, plane waves in theyz plane that can be expressed
c(x)5FqP

(x)eiqP•x, whereqP5(0,qy ,qz) and where, as in-

ns
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dicated, the form of the functionFqP
(x) can depend onqP .

When k050, the eigenfunctions associated with the low
eigenvalue ofK are c(x)5eiqC•x in which qC can have a
nonvanishingx component. We allow explicitly for this com
ponent of c that varies periodically withx by setting
FqP

(x)5fqP
(x)eiqxx and c(x)5fqP

(x)eiq•x, where q
5(qx ,qP). With this form forc, FH becomes

FH
0 5AE dxfqP

* ~x!H~x,p̂,q!fqP
~x!, ~4!

wherep̂5 i 21d/dx is the momentum operator and

H~x,p̂,q!5 r̃ 1D uuQuu
2~x,q!1D'Q'

2 ~x,p̂,q!

1D uu'@Quu~x,q!Q'~x,p̂,q!

1Q'~x,p̂,q!Quu~x,q!#, ~5!

whereQuu(x,q)5quu
2(x)2q0

2 , with quu
2(x)5@q•n0(x)#2, and

Q'(x,p̂,q)5p̂212qxp̂1q'
2 (x)2q0'

2 , where q'
2 (x)5q2

2quu
2(x).
H(x,p̂,q) is a periodic function ofx with a band spec-

trum and Bloch eigenfunctions. To the lowest order
k0 /q0, however, eigenfunctions are localized at spa
minima in r̃ (x,q)5H(x,0,q), which can be approximated b
the lowest-order terms in a Taylor expansion about th
minima. For any givenq, r̃ (x,q) will have a minimum at
somex5xm(q). Sincer̃ (x,q) depends onx only in the com-
binationn0(x)•q, xm„U(u)q…5xm(q)1u/k0, whereU(u) is
the operator that rotatesqm through an angleu aboutp, and
it is always possible to find aq5qm such thatxm(qm)50. If
f(x) is an eigenfunction ofH(x,p̂,qm) with energye, then
c(x)5f(x2u/k0)eiqm(u)•x, where qm(u)5U(u)qm , is an
eigenfunction of the harmonic kernel ofFH with energye for
all u.

Our approach, therefore, is to find thoseq’s that minimize
r̃ (0,q) or, equivalently, thoseq’s for which Quu(0,q)50 and
Q'(0,0,q)50. Since quu

2(0)5qz
2 , and q'

2 (0)5qx
21qy

2 , it
follows that r̃ (0,q) is at its minimum equal tor̃ for qz5q0
and (qx ,qy)5q0'(cosg,sing) for any g. The Bordeaux
phase corresponds tog50, and the RL phase corresponds
g5p/2. Having foundqm , we can expandQuu and Q' in
powers ofx and p̂:

Quu522k0q0q0'singx1~q0
22q0'

2 sin2g!1•••,

Q'5p̂212q0'cosgp̂2Quu . ~6!

These expressions simplify in the Bordeaux and RL case

Quu
B5q0

2k0
2x2, Q'

B52q0'p̂2q0
2k0

2x2, ~7!

Quu
RL522k0q0q0'x, Q'

RL5p̂222k0q0q0'x, ~8!

plus terms, which we show shortly, that yield corrections
the lowest-order terms in (k0 /q0). It is clear from these ex-
pressions that the B and RL phases enjoy a sort of dua
obtained by interchangingx andp̂. The Hamiltonian for the
B phase will have terms proportional tox4, p̂2, and p̂x2
06070
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1x2p̂, whereas that for the RL phase will have terms prop
tional to p̂4, x2, and xp̂21p̂2x. In the B case, thep̂x2

1x2p̂ term can be removed by transforming the wave fun
tion via fB(x)5exp(imBx3)f̃B(x) for an appropriate choice
of mB , while the x2p̂1p̂x2 term in the RL case can b
removed by transforming the Fourier transformfRL(k)
5*dxe2 ikxfRL(x) to exp(imRLk

3)f̃RL(k). In both cases, the
eigenfunctionf̃B(x) and f̃RL(x) are localized nearx50
over some characteristic lengthl, and it is convenient to ex-
press them as functions of the unitless variableu5x/ l . This
leads to the Hamiltonians for the RL and B phases expres
to the lowest order inu and p̂u5 i 21d/du:

H RL
0 2 r̃ 54D uuq0

4s2v~k0l !2Fu21
1

~k0l !6

k0
4h's1

4q0
4s2

2v
p̂u

4G ,

H B
02 r̃ 5D uuq0

4s1~k0l !4Fu41
1

~k0l !6

4k0
2h'v

q0
2s1

p̂u
2G , ~9!

where s1512(h uu'
2 /h') and s2511h'22h uu' . We can

choosel to make the respective coefficients ofp̂u
4 andp̂u

2 in
H RL

0 andH B
0 be unity:

~k0l RL!
65~k0 /q0!4h's1 /~4s2

2v!,

~k0l B!654~k0 /q0!2~h'v/s1!. ~10!

With these choices, H RL
0 5 r̃ 1E0(hs2)1/3(k0 /q0)4/3@u2

1p̂u
4# and H B

05 r̃ 1h'
2/3E0(k0 /q0)4/3@u41p̂u

2#, where E0

5D uuq0
4@16v2s1#1/3, are duals to each other withu21p̂u

4 and
u41p̂u

2 having the same lowest eigenvaluee0.
The eigenvalues of bothH RL

0 2 r̃ and H B
02 r̃ scale as

D̄q0
4(k0 /q0)4/3. Higher-order terms ink0x and p̂ neglected

in Eq. ~6! yield corrections to the dominant (k0 /q0)4/3 be-
havior of bothH B

02 r̃ andH RL
0 2 r̃ of the order of (k0 /q0)2

or higher. In additionH 02 r̃ scales ask0 /q0 whengÞ0,p/2,
and corrections toH B

02 r̃ andH RL
0 2 r̃ , respectively, scale a

g2(k0 /q0)2/3 and (p/22g)2(k0 /q0)2/3. Thus the B and RL
phases always have lower energy than phases with inte
diate values ofg.

The cholesteric phase becomes unstable atk05kc2 when
the smallest eigenvalue ofH 0 becomes zero. Thus

kc2
RL5

q0

~h's2!1/4S u r̃ u
e0E0

D 3/4

, kc2
B 5

q0

h'
1/2S u r̃ u

e0E0
D 3/4

,

and nearu r̃ u50, both kc2(RL) and kc2(B) scale asu r̃ u3/4.
Their ratio is kc2

B /kc2
RL5(h's2)1/4. Thus, kc2

B .kc2
RL and the

cholesteric phase becomes unstable to the B phase befor
RL phase whens2511h'22h uu'.h' , i.e., when h uu'
,1/2, and it becomes unstable to the RL phase before th
phase whenh uu'.1/2. This means that the RL phase is n
stable in the original CL model in whichD uu'50. Stability
of the nematic phase in the absence of chirality requ
D uuD'2D uu'

2 5D uuD's1.0 or h uu'
2 ,h' . It is clearly pos-
3-3
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sible to satisfy both this condition andh uu'.1/2, so that
there is a range of parameters for which the RL phas
stable.

The B eigenfunctions are of the formf(u)

5eimB8u3
f̃B(u), where (u41p̂u

2)f̃B(u)5e0f̃B(u). The RL
eigenfunctions are of the form fRL(u)

5*(dk/2p)e2 imRL8 k3
f̃B(k), where f̃B(u) and f̃B(k) are

identical functions of different arguments.f̃B(u) can be ob-
tained numerically using the shooting method, and it, alo
with fRL(u), is plotted in Fig. 4. The resulting eigenvalu
is e051.060 357 . . . . An excellent approximation to
fB(u) over the entire range of u is f̃(u)

5exp@21
2Au2A11 4

9 (u/A)2#, where A51.035. This func-
tion satisfies the requirement thatf̃(u)→exp(21

3uu3u) as uuu
→`.

To determine the structure of the TGBC phases, we con
struct variational smectic order parameters from the deg
erate set of lowest eigenfunctions ofH(x,p̂,q),

c~x!5C(
s

f@~x2nlb!/ l #eiqm(u)•x, ~11!

where qm(u)5U(u)qm and, as discussed in the paragra
preceding Eq.~9!, qm has different forms in the Bordeau

FIG. 4. Amplitude of eigenfunctions for~a! the Bordeaux case
and ~b! the RL case. Note that the RL wave function has an os
latory component and it is slightly asymmetric.
06070
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and RL phases. Following the treatment of the cholesteric
TGBA transition@1#, we can write the total free energy afte
minimizing over director fluctuations as

F

K2q0
2V

52
1

2
2

A
4b~ l b / l ! S k02kc2

k0
D 2

, ~12!

whereb( l b / l ) depends on the separationl b between grain
boundaries, andA depends onk0 and l but not on l b .
Thus, the equilibrium value ofl b is that which minimizes
b( l b / l ), which can be expressed as$@c4#av

2k2
22(k0 /q0)2/3@ f #av%/@c2#av

2 , where f is a complicated
function of the order ofc4 and @g#av5V21*d3xg is the
spatial average ofg. Carrying out this minimization proce
dure using the analytic approximation forfB(u), we find
l b / l'2.15 for the Bordeaux andl b / l'3.0 for the RL TGBC
phases, respectively. To find the spacing between dislo
tions in a grain boundary, we use the geometric relationk0
5d/(sina0lbld), wherep/22a0 is the angle betweenN and
p. Our results for l b; l , l d;Pd/ l , and j;(Dq0

2/ r̃ )1/2

;d1/3P2/3 are summarized in Table I. The wave functionc
for our calculated values ofl b for both TGBC phases are
shown in Fig. 3.

We have presented an overview of the properties of
the Bordeaux and RL TGBC phases and the transition t
them from the cholesteric phase obtained from
Abrikosov-like analysis near the upper critical twistkc2 at
which the cholesteric phase becomes unstable. In a fu
paper@16#, we will present more details of our calculation
We will also discuss the relation between our work and t
of Dozov @13#.
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