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Structure of twist-grain-boundary —C phases
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We study properties of the Renn-Lubensky twist-grain-bounda@r{¥GB¢) phase, with layer normal
rotating in a plane perpendicular to the pitch axis, and the Bordeaux:T@RBse, with the layer normal
rotating on a cone parallel to the pitch axis near the upper critical teyistmarking the transition to the
cholesteric phase. We introduce a generalized model free energy for the s@qitiase that allows either
TGB: phase to be stable, and we calculaitg and the order-parameter profile, which shows only modest
spatial variation, for both phases.
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Twist-grain-boundary or TGB phasgk 2,4 are phases of to this as the Renn-Lubensky or RL T@Bphase. In the
layered smectic liquid crystalg3] induced by molecular second TGR phase, discoverei®] and studied by the Bor-
chirality. They consist of periodically spaced grain bound-geaux group and collaboratof0], n rotates in the plane
aries, each composed of an array of parallel dislocationgyerpendicular tg, butN rotates on a cone with a component
separating smectic slabs as depicted in Figs. 1 and 2. The, 6] top so thatp does not lie parallel to the smectic
layer normalsN of the slabs rotate in discrete jumps acrossi; ars as shown in Fig. 2. We will refer to this as the Bor-
the grain boundaries. These remarkable phases are the anakaéaux or B TGB phase. No pure form of the RL phase has
in liquid crystals[5] of the Abrikosov flux lattice in super- been reported, though r;hases with two-dimensional modula-
conductord 6] with the complex smectic mass-density-wavetion of the Ioca,l RL TGB structure have been obsenjdd]

amplitudey the analog of the superconducting order param :
eter, dislocations in the grain boundary the analog of vorti-! '0Ugh the RL TGR structure may be unstable with respect

ces, and the chiral coupling constdninduced by molecular to the§e mod-ulations, we assume here that it can_be stable.
chirality the analog of the external magnetic figld We will not discuss the TGB phase[8] with smecticC*

The simplest TGB phase is the TGBhase in which the slabs in which the director rotates in a cone from layer to
smectic slabs between grain boundaries have the character /8yer-
a bulk smecticA (SmA) phase in which the layer normal Our goal is to study the structure of both the RL and B
and the directon, specifying the direction of average mo- phases near the upper critical fiehd,, where the TGB
lecular alignment, are parallel to each other in a plane perPhase becomes unstable with respect to the cholesteric phase
pendicular to the pitch axis along. In TGB. phases, the in which the smectic order parameter is zero and the director
smectic slabs have the character of a bulk sme@tic- twists in a helical fashion abogt with a pitchP. We follow
(SmC)with n tilted relative toN. Two distinct structures for closely the procedure developed by Abrikosi@] in his
the TGR: phase immediately come to mind. In the firgt8],  analysis of the superconducting flux phase near the upper
both N andn rotate in the plane perpendicularpdout with  critical field H., and applied successfully to the TBhase
a finite angle between them as shown in Fig. 1. We will refemearh., [1]. Our analysis of the transition to the bordeaux

TGB phase is essentially identical to that presented by

grain boundary ],d:/

>
>

dislocation

FIG. 1. The RL TGR phase. There is a fixed angle between the  FIG. 2. The Bordeaux TGBphase. There is a fixed angle be-
layer normalN and the directon, which rotate in the plane per- tweenN andn, butn rotates in the plane perpendiculargpandN
pendicular to the pitch axig. rotates on a cone whose axis is parallepto
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TABLE I. 'H, and proportionality of,, 4, and& to powers of

P andd in TGB phases. Fu= j d3X[T|4]%+ Dy |[V(x) + 5]

Phase My ly lg ¢ +D,[[VF(x)+0a, 1yl?

TGB _dzldu2+u2 P1/2d1/2 P1/2d1/2 Pl/2d1/2 2 2 " 2 2

BordAeaux —dXdul+ut p2/3g1/3 pl/3g2i3 p2/3gL/3 + D\|i[v\|(x)+q0]‘/’ [VI(¥)+ao Jy+ecl (1)

RL d/du+u® - PET PRSPPI yhereVE(x)=[n(x)- V]2 andV?(x)= V2~V j(x). With the
identification qéL =—-C,/2D, andT=r—C{/(4D,), this

Luk’yanchuk [12]. Using a more general model than his, model is simply an alternative repr(_esentation of _the CL

which does not permit a stable RL phase, we study both thElodel[14] except for the term proportional @y, , which,

B and RL phases, including their order-parameter profiles2S We shall see, is needed to stabilize the RL phase. When

but not the TGB, phase he introduced. Op, <0, this model has a .phase transition from the
Several results of our analysis are worthy of note. TheN phase to the St phase with = yx€'9%% where

linear stability operator associated with the TGEhase, like = (—r/g)¥2 Whengg, >0, it has a transition to the Sin

that associated with the Abrikosov phase, is a quantum haphase with = l,_/fceiqc'x, where = (—TF/g)*? with qc
monic oscillator Hamiltonian#,,= —d?/du?+u?, whereu  =(qo, COS¥,0o, SiN¥,qo) for any angley.
is a rescaled coordinate alopg The same operator associ-  To complete the description of our system, we add the

ated with the B phase is a-anharmonic oscillator Hamil- Frank free energ¥ , for the director including the contribu-
tonian, —d?/du?+u*, whereas that associated with the RL tion from molecular chirality,
phase is the dual of the Bordeaux operatidfdu*+u?. The
dependence of the grain-boundary spadingthe dislocation
spacingly within a grain boundary, and the smectic coher-
ence lengtht on the cholesteric pitcR and the layer spacing 5
d is different in the three phases as reviewed in Table |. The +K3[nX(VXn)]“+hn-(VXn)}. 2
near equality ofl, and |4 in the TGB, phase and their _ . .
pli2gL/2 dependence on pitch and layer spacing has beel/hen z,_b=0, the equmbru_Jm s_tate is the cholesteric phase
verified [2]. Experimentally[10], |, is substantially larger detérmined by, alone with director
thanl 4 in the Bordeaux TGB phase in agreement with Table
I. Finally, we find that the smectic order parameter, though
depressed at the grain boundaries, is reasonably constant in
the two TGRB. phases as shown in Fig. 3. We find no evi- Whereko=h/K,=2m/P. _ o
dence in the B phase of melted grain boundaries along which 1"€ré are several dimensionless quantitiesFirF,
#~0 as suggested by Doz¢e3]. +F, that play a rqle in our analysis. (Z)ne is the ratio
To describe the smectic properties of the TGB phases nede/do=d/P, which is of the order of 10° or less. Our
hes, We use a slight modification of the Chen-Lubenggy)  Primary concern will be_the limit in Whlclkolqo ap_proe_lches_
model[14] for transitions from the nematid) to SmA SmC zero, and we will consider only leading terms in this ratio.
phases. In this model, the smectic molecular number densifther parameters are the ratios
is expressed ap= i+ *, where ¢ is the complex mass-
density-wave amplitude with wave numbers with magnitude
peaked neagy=2w/d. The free energyr ,=Fy+Fy_ is _ _
the sum of a nonlinear part, whefg, = g/d®x||% anda 2and the tW3'St Ginzburg parameter,
part harmonic in, =(gK2/2)"?(4Dig3). In at least one materidll5], 7,
~0 andn, <1, but there is n@ priori reason why either of
these conditions should not be violateg tarf« is a mea-
sure of the equilibrium tilt anglex betweenn and N. It is
more convenient to use the twisi=h/K, rather tharh as a

Fn:%f (K1 (V-n)2+Ko[n- (VXN P

Ng(X) = (0,— sinkyx, coskgx), 3

7, =D, /D), u.=D|./Dy, ©=0°4/a},

AL /\ /b, AN a7 measure of chirality. The critical twist at which the choles-
1 05 05 1 1 05 05 1 teric phase becomes unstable to the TGB phasek.,is
(®) (b) =h./K
c2 2¢

To determine when the cholesteric phase first becomes

FIG. 3. The are amplit ,0,0)|? smectic order param- . .
squar plitude/(x,0,0)/" s 1c OTEeT P unstable with respect to the development of smectic order

eter as a function ok in (a) the Bordeaux phase an)) the RL

TGB, phase. These figures show the squared slab wave functior@?d t0 find our variational wave functiois] for the TGB
|#(x—nly)|? with n=—1 centered at—I, (short dash, short phases, we calculate the lowest eigenvalues and associated

spacé, with n=1 centered ak, (long dash, short spageand with ~ €igenfunctions of the harmonic kernel obtained frém
n=0 (short and long dashesnd |#(x,0,0)? (full line). Though ~ With n(x) replaced byno(x). This kernelK is a periodic
|p(x)| dies off fairly rapidly, |¢(x,0,0)]? has a robust value at function ofx with period P/2. Its eigenfunctions are, there-

grain-boundary positions/I,=+0.5. Note the asymmetry about fore, plane waves in thgz plane that can be expressed as
x=0 in the RL case. zjx(X)z(I)qP(x)e'qP'X, wheregp= (0.4, .9,) and where, as in-
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dicated, the form of the functioth,, (x) can depend onp . +X27r, whereaszthat for thze RL phase will have terms propor-
Whenk,=0, the eigenfunctions assomated with the Iowestt'Onal to 7%, x?, andx#®+@’x. In the B case, therx’

eigenvalue ofK are y(x)=e'% in which gc can have a +x2% term can be removed by transforming the wave func-
nonvanishing« component. We allow explicitly for this com- 0N via ¢g(x) = exg(ﬂBXf)?éB(X) for an appropriate choice
ponent of ¢ that varies periodically withx by setting ©f #s, While thex“r+7x” term in the RL case can be
Dy (X)= by (X)€D and P(x)=dy (X)€%, where q removed by transforming the Fourier transford, (k)

9p e dp ' = [dxe ®pr (X) to explur k) Pri(K). In both cases, the

= (A, gp). With this form for ¢, Fy; becomes eigenfunctiondg(x) and dg.(X) are localized neax=0

over some characteristic lengthand it is convenient to ex-
FﬂzAJ dx¢§P(x)H(x,%,q)¢qP(x), (4) press them as functions of the unitless variabtex/I. This
leads to the Hamiltonians for the RL and B phases expressed
where#=i"d/dx is the momentum operator and to the lowest order i and 7, =i~ *d/du:
H(x,7,0) =T +D}Qf(x,a) +D, Q% (x,7,q) kin,s
) H3,~F=4D| gl (kol)?| U2 O
+ D)L [Q)(X, QL (X,7,q) (kol)® 4qpszw
+QL(X1%!q)Q||(X!q)]! (5) 2
HO 7 =Dy gy (ko) ut s TOTC | g
where Q; (x,a) =af(x) -5 , with gf()=[q:no(x)I°, and 5= T=Dydosskol T U e~z ) O
QL(X m,q) = +2qx77+ch(x) QOia where qi(x) 9
—ai(9). where s;=1—(#5f,/7,) and s,=1+7, =27, . We can

H(x,r,q) is a periodic function ofk with a band spec-
trum and Bloch eigenfunctions. To the lowest order in
ko/qg, however, eigenfunctions are localized at spatial
minima inT(x,q) = H(x,0,q), which can be approximated by

choosel to make the respective coefﬁuentsm‘f andw in
H e andH 3 be unity:

6_ 4 2
the lowest-order terms in a Taylor expansion about these (kolr1)"= (ko/00)" 77, 51/(4520),
minima. For any giverg, T(x,q) will have a minimum at . 5
somex=X.,(q). Since¥(x,q) depends ox only in the com- (kolg)*=4(ko/do) (7. w/sy). (10

binationng(X) - q, Xm(U(0)q)=xm(q) + 6/ky, whereU(6) is
the operator that rotates, through an angl® aboutp, and ~ With these choices, HE =T+ Eo(7732)1/3(ko/(10)4/3[U2
it is always possible to find @=q,, such thaix(q,)=0. If  +#{] and H3=T+ »* BE (Ko /qo)*J ut+ 72 ol where Eq

¢(x) is an eigenfunction of{(x, 7,qy,,) with energye, then = D|‘q0[16w231]1’3 are duals to each other withi+ 7 7 and
$(X) = (x— 0/ko)e' ()%, where qn(6) =U ()G, is an  u*+ 72 having the same lowest elgenvale@

eigenfunction of the harmonic kernel Bf; with energye for The eigenvalues of botI‘HRL—r and HB_T scale as
all 0. Dag(ko/do)*. Higher-order terms irkox and 7 neglected

Our approach, therefore, is to find thage that minimize Eq. (6) yield corrections to the dominank{/qo)*? be-
T(0.9) or, equivalently, those's for which Q(0.9)=0 and  hayior of both3—T andH 3, T of the order of ko /dj)?
Q,(0,00)=0. SlnceqH(O) az. and qf(0)=ai+ay, it higher. In additiort{ °—T scales a&,/q, wheny+0,7/2,

follows thatT(0,0) is at its minimum equal i for d;=0do  and corrections ta{3—T and %, —F, respectively, scale as
and (y,dy) =do, (cosy,siny) for any y. The Bordeaux v2(ko/00)?2 and (m/2— 7)2(ko/qo) 2. Thus the B and RL

phase corresponds to=0, and the RL phase corresponds 10 yh»qeq always have lower energy than phases with interme-
y=ml2. Having foundg,,, we can expand); andQ, in  jiate values ofy.

powers ofx and r: The cholesteric phase becomes unstable,atk., when
the smallest eigenvalue 61° becomes zero. Thus

T"| )3/4 kB :&( |T"| )3/4
€oBo) = % 771/2 €Eo/ '

B_ 2Kk2x2 —9 222 7 and near|r|—0 both k.,(RL) and kcz(B) scale agF|¥.
Qf=dokox’,  QT=2d, 7= doks " Their ratio iskS,/k3=(7,s,)Y4 Thus, k5,>kZ- and the
Qﬁ%L: — 2Ko%0o, X, Rb= 22— 2Kko0oGo, X, (8) cholesteric phase becomes unstable to the B phase before the

RL phase whens,=1+», —27,>7,, ie., wheny,

plus terms, which we show shortly, that yield corrections to<1/2, and it becomes unstable to the RL phase before the B

the lowest-order terms irkf/qg). It is clear from these ex- phase Whem||l>1/2 This means that the RL phase is not

pressions that the B and RL phases enjoy a sort of dualitgtable in the original CL model in whicb, =0. Stability

obtained by interchangingand 7. The Hamiltonian for the of the nematic phase in the absence of chirality requires
2, and#x? D D, -Df, =DyD,s;>0 or 5, <#, . Itis clearly pos-

Q= —2ko0oJo, Sin yx+(q5—ag, sify) +- - -,

Q, = 7%+ 2, CoSyT— Q. (6) R 9o
€2 14
(7.52)

These expressions simplify in the Bordeaux and RL cases to

B phase will have terms proportional ¢, 7?2,
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B 0 éprw) 9 and RL phases. Following the treatment of the cholesteric-to-
TGB, transition[1], we can write the total free energy after
minimizing over director fluctuations as

) 2 4 X 2 | 2 1 F 1 A (ko_kcz)z

© ® Gav 2 B0 | K 2
FIG. 4. Amplitude of eigenfunctions fdia) the Bordeaux case
and (b) the RL case. Note that the RL wave function has an oscil-where B(I,/1) depends on the separatiby between grain
latory component and it is slightly asymmetric. boundaries, and4 depends ork, and | but not onl,.
Thus, the equilibrium value off, is that which minimizes
sible to satisfy both this condition anf}||l>1/2, so that B(l,/1), which can be expressed as{[(/,4]av
there is a range of parameters for which the RL phase is Kiz(ko/QO)ZIS[f]av}/[9//2]2\,' where f is a complicated
stable. _ . function of the order ofy* and[g],=V 1fd3xg is the
The B eigenfunctions are of the formé(u)  spatial average of. Carrying out this minimization proce-
=ei”B”3ZZ>B(u), where (*+ 75) dg(u)=€oPg(u). The RL  dure using the analytic approximation feg(u), we find
eigenfunctions are of the form ¢ (u) I,/1~2.15 for the Bordeaux anlg /1~ 3.0 for the RL TGR
=f(dk/2w)e“”§tk3$3(k), where dg(u) and dg(k) are phasgs, respgctively. To find the spacing betv_veen d_isloca-
identical functions of different argumen®g(u) can be ob-  1ONS in & grain boundary, we use the geometric relakign
tained numerically using the shooting method, and it, along™ 9/ (Sinadlle), wherem/2— ay is the angle betweegd a?/g
with ¢g.(u), is plotted in Fig. 4. The resulting eigenvalue P Ssurmresults forly~1, I4~Pd/l, and &~(Dqo/T)”
is €=1.0603%.... An excellent approximation to ~d~°P°*are summarized in Table I. The wave functign
#s(u) over the entre range ofu is @(u) for our calculated values df, for both TGE. phases are

_ 1 YEYIRY _ . _shown in Fig. 3.
7exr[ _zAuz Lt Q(U/.A) . whereA—1.035.1T?|s func We have presented an overview of the properties of the
tion satisfies the requirement th@{u) —exp(—3/u’) as|u|

the Bordeaux and RL TGBphases and the transition to

—00 . .

j d ine th £ th h them from the cholesteric phase obtained from an

To determine the structure of the TgBhases, we con-  Apikosov-like analysis near the upper critical twigt, at
MWhich the cholesteric phase becomes unstable. In a future
paper[16], we will present more details of our calculations.
_ We will also discuss the relation between our work and that
P(X)=C>, ¢[(x—nlp)/1]e/dm®) X (1)  of Dozov[13].
S

We thank Randall Kamien for a careful reading of this
where q,,(0) =U(6)qg,, and, as discussed in the paragraphmanuscript. This work was supported in part by the National
preceding Eq(9), q,, has different forms in the Bordeaux Science Foundation under Grant No. DMR 00-96531.
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